Friday, June 22, 2012

SETTING THE TOOLHOLDER AND THE CUTTING TOOL



SETTING THE TOOLHOLDER AND THE CUTTING TOOL
The first requirement for setting the tool is to have it rigidly mounted on the tool post holder. Be sure the tool sets squarely in the tool post and that the setscrew is tight. Reduce overhang as much as possible to prevent the tool bit from springing during cutting. If the tool has too much spring, the point of the tool will catch in the work, causing chatter and damaging both the tool and the work
The point of the tool must be correctly positioned on the work Place the cutting edge. slightly above the center for straight turning of steel and cast iron and exactly on the center for all other work To set the tool at the height desired, raise or lower the point of the tool by moving the wedge in or out of the tool post ring. By placing the point opposite the tailstock center point, you can adjust the setting accurately.

HOLDING THE WORK
You cannot perform accurate work if the work piece is improperly mounted. The requirements for proper mounting are as follows:
1. The work center line must be accurately centered along the axis of the lathe spindle.
2. The work must be held rigidly while being turned.
3. The work must NOT be sprung out of shape by the holding device.
4. The work must be adequately supported against any sagging caused by its own weight and against springing caused by the action of the cutting tool.

There are four general methods of holding work in the lathe: (1) between centers, (2) on a mandrel, (3) in a chuck, and (4) on a faceplate. Work may also be clamped to the carriage for boring and milling, in which case the boring bar or milling cutter is held and driven by the headstock spindle.

Other methods of holding work to suit special conditions are (1) one end on the live center or in a chuck and the other end supported in a center rest, and (2) one end in a chuck and the other end on the dead center.

Holding Work between Centers
To machine a work piece between centers, drill center holes in each end to receive the lathe centers. Secure a lathe dog to the work piece. Then mount the work between the live and dead centers of the lathe.

CENTERING THE WORK.—To center round stock where the ends are to be turned and must be concentric with the unturned body, mount the work on the head spindle in a universal chuck or a draw-in collet chuck If the work is long and too large to pass through the spindle, use a center rest to support one end. Mount a center drill in a drill chuck in the tailstock spindle and feed it to the work by turning the tailstock hand wheel.
For center drilling a work piece, the combined drill and countersink is the most practical tool. These combined drills and countersinks vary in size and the drill points also vary. Sometimes a drill point on one end will be 1/8 inch in diameter, and the drill point on the opposite end will be 3/16 inch in diameter. The angle of the center drill must always be 60° so that the countersunk hole will fit the angle of the lathe center point. If a center drill is not available, center the work with a small twist drill. Let the drill enter the work a sufficient distance on each end; then follow with a 60° countersink.
In center drilling, use a drop or two of oil on the drill. Feed the drill slowly and carefully to prevent breaking the tip. Take extreme care when the work is heavy, because you will be less able to "feel" the proper feed of the work on the center drill.
If the center drill breaks during countersinking and part of the broken drill remains in the work, you must remove this part. Sometimes you can drive the broken piece out by a chisel or by jarring it loose, but it may stick so hard that you cannot remove it this way. Then you must anneal the broken part of the drill and drill it out.
We cannot overemphasize the importance of proper center holes in the work and a correct angle on the point of the lathe centers. To do an accurate job between centers on the lathe, you must ensure that the center-drilled holes are the proper size and depth and that the points of the lathe centers are true and accurate.

Holding Work on a Mandrel
Many parts, such as bushings, gears, collars, and pulleys, require all the finished external surfaces to run true with their center hole, or bore.
General practice is to finish the bore to a standard size within the limit of the accuracy desired. Thus a 3/4-inch standard bore would have a finished diameter of from 0.7495 to 0.7505 inch this variation is due to a tolerance of 0.0005 inch below and above the true standard of exactly 0.750 inch. First drill the hole to within a few thousandths of an inch of the finished size; then remove the remainder of the material with a machine reamer, following with a hand reamer if the limits are extremely close.

Then press the piece on a mandrel tightly enough so the work will not slip while being machined Clamp a dog on the mandrel, which is mounted between centers. Since the mandrel surface runs true with respect to the lathe axis, the turned surfaces of the work on the mandrel will be true with respect to the bore of the piece. A mandrel is simply a round piece of steel of convenient length which has been center drilled and ground true with the center holes. Commercial mandrels are made of tool steel, hardened and ground with a slight taper (usually 0.0005 inch per inch). This taper allows the standard hole in the work to vary according to the usual shop practice and still provides a drive to the work when the mandrel is pressed into the hole. The taper is not great enough to distort the hole in the work the center-drilled centers of the mandrel are lapped for accuracy. The ends are turned smaller than the body of the mandrel and provided with flats, which give a driving surface for the lathe dog.

Holding Work in Chucks
The independent chuck and universal chuck are used more often than other work-holding devices in lathe operations. The universal chuck is used for holding relatively true cylindrical work when the time required to do the job is more important than the concentricity of the machined surface and the holding power of the chuck When the work is irregular in shape, must be accurately centered, or must be held securely for heavy feeds and depth of cuts, an independent chuck is used. FOUR- JAW INDEPENDENT CHUCK.-Figure 9-23 shows a rough cylindrical casting mounted in a four-jaw independent lathe chuck on the spindle of the lathe. Before truing the work, determine which part you wish to have turned true. To mount this casting in the chuck, proceed as follows:

1. Adjust the chuck jaws to receive the casting. The same point on each jaw should touch the same ring on the face of the chuck if there are no rings; put each jaw the same distance from the outside edge of the body of the chuck.

2. Fasten the work in the chuck by turning the adjusting screw on jaw 1 and then on jaw 3, a pair of jaws which are opposite each other. Next, tighten jaws 2 and 4.

3. At this stage the work should be held in the jaws just tightly enough so it will not fall out of the chuck while you turn it.

4. Revolve the spindle slowly by hand and, with a piece of chalk, mark the high spot (An in fig. 9-23) on the work while it is revolving. Steady your hand on the tool post while holding the chalk.

5. Stop the spindle. Locate the high spot on the work and move the high spot toward the center of the chuck by releasing the jaw opposite the chalk mark and tightening the one nearest the mark

6. Sometimes the high spot on the work will be located between adjacent jaws. In that case, loosen the two opposite jaws and tighten the jaws adjacent to the high spot.



THREE-JAW UNIVERSAL CHUCK- The three-jaw universal or scroll chuck is made so that all jaws move at the same time. A universal chuck will center almost exactly at the first clamping, but after a long period of use may develop inaccuracies of up to 0.010 inch in centering the work. You can usually correct the inaccuracy by inserting a piece of paper or thin shim stock between the jaw and the work on the high side.
When you chuck thin sections, be careful not to clamp the work too tightly because the work will distort. If your machine distorted work, the finished work will have as many high spots as there are jaws, and the turned surface will not be true.

Care of Chucks
To preserve the accuracy of a chuck, handle it carefully and keep it clean and free from grit.
NEVER force a chuck jaw by using a pipe as an extension on the chuck wrench.
Before mounting a chuck, remove the live center and fill the hole with a rag to prevent chips and dirt from getting into the tapered hole of the spindle. Clean and oil the threads of the chuck and the spindle nose. Dirt or chips on the threads will not allow the chuck to run true when it is screwed up to the shoulder. Screw the chuck on carefully, tightening it just enough to make it difficult to remove. Never use mechanical power to install a chuck.
To remove a chuck, place a spanner wrench on the collar of the chuck and strike a smart blow on the handle of the wrench with your hand. When you mount or remove a heavy chuck, lay a board across the bed ways to protect them; the board will support the chuck as you put it on or take it off.

The comments on mounting and removing chucks also apply to faceplates.

Holding Work on a Faceplate
A faceplate is used for mounting work that cannot be chucked or turned between centers because of its size or shape.
Work is secured to the faceplate by bolts, clamps, or any suitable clamping means. The holes and slots in the faceplate are used for anchoring the holding bolts. Angle plates may be used to position the work at the desired angle. Note the counterweight added for balance.
For work to be mounted accurately on a faceplate, the surface of the work in contact with the faceplate must be accurately faced. It is good practice to place a piece of paper between the work and the faceplate to prevent slipping.
Before you clamp the work securely, move it about on the surface of the faceplate until the point to be machined is centered accurately with the axis of the lathe. Suppose you wish to bore a hole, the center of which has been laid out and marked with a prick punch. First, clamp the work to the approximate position on the faceplate. Slide the tailstock up until the dead center just touches the work. (NOTE: The dead center should have a sharp, true point.) Now revolve the work slowly; if the work is off center, the point will scribe a circle on the work. If the work is on center, the point of the dead center will coincide with the prick punch mark.

Using the Center Rest and Follower Rest
Place the center rest on the ways where it will give the greatest support to the work piece. This is usually at about the middle of its length.
Ensure that the jaws of the center rest are adjusted to support the work while allowing it to turn freely.
The follower rest differs from the center rest in that it moves with the carriage and provides support against the forces of the cut only. Set the tool to the diameter selected, and turn a "spot" about 5/8 to 3/4 inch wide. Then adjust the follower rest jaws to the finished diameter to follow the tool along the entire length to be turned.

Use thick oil on the center rest and follower rest to prevent "seizing" and scoring of the work piece. Check the jaws frequently to see that they do not become hot. The jaws may expand slightly if they get hot, pushing the work out of alignment (when using the follower rest) or binding (when using the center rest).

Holding Work in a Draw-In Collet Chuck
The draw-in collet chuck is used for very fine, accurate work of small diameter. Long work can be passed through the hollow drawbar. Short work can be placed directly into the collet from the front. The collet is tightened on the work by rotating the drawbar to the right; this draws the collet into the tapered closing sleeve. The opposite operation releases the collet. Accurate results are obtained when the diameter of the work is exactly the same size as the dimension stamped on the collet. In some cases, the diameter may vary as much as 0.002 inch; that is, the work may be 0.001 inch smaller or larger than the collet size. If the work diameter varies more than this, it will impair the accuracy and efficiency of the collet. That is why a separate collet should be used for each small variation or work diameter, especially if precision is desired.

No comments:

Post a Comment